二进制代码相似性检测(BCSD)方法测量了两个二进制可执行代码的相似性。最近,基于学习的BCSD方法取得了巨大的成功,在检测准确性和效率方面表现优于传统的BCSD。但是,现有的研究在基于学习的BCSD方法的对抗脆弱性上相当稀疏,这会导致与安全相关的应用程序危害。为了评估对抗性的鲁棒性,本文设计了一种高效且黑色的对抗代码生成算法,即FuncFooler。 FuncFooler限制了对抗代码1)保持程序的控制流程图(CFG)和2)保持相同的语义含义。具体而言,funcfooler连续1)在恶意代码中确定脆弱的候选人,2)从良性代码中选择和插入对抗性指令,以及3)纠正对抗代码的语义副作用以满足约束。从经验上讲,我们的FuncFooler可以成功攻击包括Safe,ASM2VEC和JTRAN在内的三种基于学习的BCSD模型,它们质疑是否需要基于学习的BCSD。
translated by 谷歌翻译
在以前的作品中广泛讨论了句子语义相似性的原始伯特的表现不佳。我们发现不满意的性能主要是由于静态令牌嵌入偏差和无效的伯特层,而不是姓氏的高余弦相似性。为此,我们提出了一个迅速的句子嵌入方法,可以减少令牌嵌入偏差,使原始伯特层更有效。通过将句子嵌入式任务重新塑造为填充空白问题,我们的方法显着提高了原始伯特的性能。我们讨论了两个提示符,表示基于及时的句子嵌入的三个提示搜索方法。此外,我们提出了一种通过模板去噪技术的新型无监督培训目标,这大大缩短了监督和无人监督的环境之间的性能差距。对于实验,我们评估我们在非微调和微调的设置上的方法。即使是非微调方法也可以优于STS任务上的无监督服务器等微调的方法。我们的微调方法在无监督和监督设置中优于最先进的方法SIMCSE。与SIMCSE相比,我们分别在无监督环境下实现了2.29和2.58点的伯特和罗伯塔的改进。
translated by 谷歌翻译
当大型训练数据集不可用于低资源域时,命名实体识别(NER)模型通常表现不佳。最近,预先训练大规模语言模型已成为应对数据稀缺问题的有希望的方向。然而,语言建模和ner任务之间的潜在差异可能会限制模型的性能,并且由于收集的网数据集通常很小或大而是低质量,因此已经研究了NER任务的预训练。在本文中,我们构建了一个具有相对高质量的大规模核心语料库,我们基于创建的数据集预先列车。实验结果表明,我们的预训练模型可以显着优于八大域的低资源场景中的百合形和其他强基线。此外,实体表示的可视化进一步指示Ner-BERT用于对各种实体进行分类的有效性。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Reinforcement Learning (RL) is currently one of the most commonly used techniques for traffic signal control (TSC), which can adaptively adjusted traffic signal phase and duration according to real-time traffic data. However, a fully centralized RL approach is beset with difficulties in a multi-network scenario because of exponential growth in state-action space with increasing intersections. Multi-agent reinforcement learning (MARL) can overcome the high-dimension problem by employing the global control of each local RL agent, but it also brings new challenges, such as the failure of convergence caused by the non-stationary Markov Decision Process (MDP). In this paper, we introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches. The OPNDQN algorithm solves the problem that traditional algorithms cannot be used in large state-action space traffic models by utilizing a fictitious game approach at each iteration to find the nash equilibrium among neighboring intersections, from which no intersection has incentive to unilaterally deviate. One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process because it considers the mutual influence among neighboring intersections by sharing their actions. On the other hand, for training a large traffic network, the convergence rate of OPNDQN is higher than that of existing MARL approaches because it does not incorporate all state information of each agent. We conduct an extensive experiments by using Simulation of Urban MObility simulator (SUMO), and show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译